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Abstract

The author uses an elementary lemma on primes dividing bino-

mial coefficients and estimates for primes in arithmetic progressions

to sharpen a theorem of J. Rickert on simultaneous approximation to

pairs of algebraic numbers. In particular, it is proven that

max
{∣∣∣∣√2− p1

q

∣∣∣∣ , ∣∣∣∣√3− p2

q

∣∣∣∣} > 10−10q−1.8161

for p1, p2 and q integral. Applications of these estimates are briefly

discussed.
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1 Introduction

Effective lower bounds for rational approximation to algebraic numbers and

their applications to diophantine equations are widely known in the literature

(see e.g. [1], [2], [3], [4], [7], [8], [9], [10], [11], [12], [13] and [15]). Via Padé

approximation, Baker [1, 2] was able to show, for example, that∣∣∣∣∣ 3
√

2− p

q

∣∣∣∣∣ > 10−6q−2.955

for all positive integers p and q and relate this to solutions of the equation

x3 − 2y3 = u.

Subsequently, Baker [3] derived bounds of the form

max
1≤i≤m

{∣∣∣∣∣θi − pi
q

∣∣∣∣∣
}
> q−λ (1.1)

for certain algebraic θ1, θ2, . . . θm, λ = λ(θ1, . . . θm) and p1, . . . pm, q positive

integers with q > q0(λ, θ1, . . . θm). Simultaneous approximation results have

also been considered by Chudnovsky [8], Osgood [13], Fel’dman [10, 11] and

Rickert [15], the last three of whom dealt with algebraic numbers of the form

(θ1, θ2, . . . θm) = (rν1 , r
ν
2 , . . . r

ν
m) (1.2)

for r1, r2, . . . rm and ν rational. In particular, Rickert showed that

max

{∣∣∣∣∣√2− p1

q

∣∣∣∣∣ ,
∣∣∣∣∣√3− p2

q

∣∣∣∣∣
}
> 10−7q−1.913 (1.3)

for p1, p2 and q positive integers.
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Recently, the author was able to sharpen the work of Osgood, Fel’dman

and Rickert in the situation described in (1.2). In [5], we stated our results

in full generality, leaving all constants “effectively computable” rather than

explicit. Here, we will present a completely explicit version of our theorem in

the special case considered by Rickert. Our sharpening depends upon bounds

on the Chebyshev function

θ(x) =
∑
p≤x

log(p)

from Schoenfeld [16]. Specifically, we show that

max

{∣∣∣∣∣√2− p1

q

∣∣∣∣∣ ,
∣∣∣∣∣√3− p2

q

∣∣∣∣∣
}
> 10−10q−1.8161 (1.4)

holds for any positive integers p1, p2 and q (compare to (1.3)).

We also give bounds for simultaneous approximation to pairs of num-

bers of the form (1 − 1/N)1/4, (1 + 1/N)1/4. These are analogous to the

results of Rickert, but are strengthened by application of a combination of

the aforementioned work of Schoenfeld with bounds on primes in arithmetic

progressions due to Ramaré and Rumely [14]. In a forthcoming paper [6], the

author applies these results to the problem of solving certain related norm

form equations.
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2 Our Approximating Forms

The work that follows depends upon the specific nature of the (equal-weighted)

Padé approximants to the system of functions

1, (1 + a1x)
ν , . . . (1 + amx)

ν .

These were investigated by Rickert in [15], through consideration of the in-

tegral

Ii(x) =
1

2πi

∫
γ

(1 + zx)k(1 + zx)ν

(z − ai)(A(z))k
dz (0 ≤ i ≤ m)

where 0 = a0, a1, . . . am are distinct integers, k a positive integer, ν a positive

rational, A(z) =
∏m
i=0(z − ai) and γ a closed, counter-clockwise contour

containing a0, a1, . . . am. In fact, he showed that one may write

Ii(x) =
m∑
j=0

pij(x)(1 + ajx)
ν (0 ≤ i ≤ m) (2.1)

where the pij(x)’s are polynomials in x with rational coefficients and degree

at most k. To be precise,

pij(x) =
∑ (

k + ν

hj

)
(1 + ajx)

k−hjxhj
m∏
l=0

l 6= j

(
−kil
hl

)
(aj − al)−kil−hl

where
∑

refers to the sum over all nonnegative h0, . . . hm with h0+. . .+hm =

k + δij − 1 for δij the Kronecker delta. Taking x = 1/N in (2.1), Rickert

deduced measures for simultaneous rational approximation to

(1 + a1/N)ν , . . . (1 + am/N)ν

by appealing to
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Lemma 2.1 Let θ1, . . . θm be arbitrary real numbers. Suppose there exist

positive real numbers l, p, L and P (L > 1) such that for each positive integer

k, we can find integers pijk (0 ≤ i, j ≤ m) with nonzero determinant,

|pijk| ≤ pP k (0 ≤ i, j ≤ m)

and ∣∣∣∣∣∣
m∑
j=0

pijkθj

∣∣∣∣∣∣ ≤ lL−k (0 ≤ i ≤ m).

Then we may conclude that

max

{∣∣∣∣∣θ1 −
p1

q

∣∣∣∣∣ , . . .
∣∣∣∣∣θm − pm

q

∣∣∣∣∣
}
> cq−λ

it for all integers p1, . . . pm and q, where

λ = 1 +
log(P )

log(L)

and

c−1 = 2 (m+ 1) p P (max(1, 2l))λ−1.

For simplicity’s sake, we will follow Rickert’s exposition closely in determining

upper bounds for |pij(1/N)| and |Ii(1/N)|. Using more precise asymptotics

(via, for instance, the saddle point method) fails to yield marked improve-

ments.

We restrict ourselves to the case when m = 2, a0 = 0, a1 = 1, a2 = −1, x =

1/N and ν = 1/n, where N ≥ 2 and n ≥ 2. Then
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Lemma 2.2

|pij(1/N)| ≤ 1.55

(
N
√

3 + 2

N
√

3−
√

3

)1/n (
3
√

3

2
(1 +

2

N
√

3
)

)k

Proof : This bound is a consequence of the proof of Rickert’s Lemma 4.1 in

[15]. �

We also have

Lemma 2.3

|Ii(1/N)| ≤ c(n)
(

27

4
(N3 −N)

)−k
where c(n) can be taken as 27/32 if n ≥ 2 and as 135/256 if n ≥ 4.

Proof : The result follows from Lemma 4.2 in [15] upon noting that∣∣∣∣∣
(
k + 1/n

3k

)∣∣∣∣∣ ≤ 27

64

(
4

27

)k

for n ≥ 2, and ∣∣∣∣∣
(
k + 1/n

3k

)∣∣∣∣∣ ≤ 135

512

(
4

27

)k
for n ≥ 4. �

3 Coefficients of Our Approximants

To sharpen Rickert’s bounds, we study the polynomials pij(x) more closely.

We have
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Lemma 3.1 If k is a positive integer, then

(a) If ν = 1/2, then 23k−1 pij(x) ∈ Z[x]

(b) If ν = 1/4, then 24k−1 pij(x) ∈ Z[x]

Proof : The first part follows directly from Rickert’s Lemma 4.3. The second

is similar; from Lemma 4.1 in [8], we have that if h0 > 0, then

23h0−1

(
k + 1/4

h0

)

is an integer. Since a0 = 0, a1 = 1 and a2 = −1, at most one term in the

product ∏
l 6=j

(al − aj)−kil−hl

is not equal to one in modulus, whence, taking

M = max {2k, 3h0 − 1 + k + max{h1, h2}}

we have that

2M
(
k + 1/4

h0

)
(a1 − a2)

−kil−hl

is an integer for l = 1 or 2. Since h0 +h1 +h2 ≤ k, it follows that M ≤ 4k−1,

concluding the proof. �

It turns out that these resulting polynomials have integer coefficients

possessing large common factors. To exploit this fact, we utilize the following

special case of a result of the author (Lemma 4.1 in [5] ) :

Lemma 3.2 Define for 1 ≤ r < n, (r, n) = 1 and {x} = x − [x], S(r) to

be the set of primes p with p >
√
nk + 1, (p, nk) = 1, pr ≡ 1 mod n and
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{
k−1
p

}
> max

(
2n−r

2n
, r
n

)
. Then if p ∈ S(r),

ordp

((
k + 1/n

h0

)(
k + h1 − 1

h1

)(
k + h2 − 1

h2

))
≥ 1

for all nonnegative integers h0, h1 and h2 with h0 + h1 + h2 = k or k − 1.

Define P2(k) to be the product over all primes p with p >
√

2k + 1, (p, 2k) =

1 and {(k − 1)/p} > 3/4. Fixing ν = 1/2, it follows from (2.2) and Lemma

3.2 that P2(k) divides the greatest common divisor, say Π2(k), of all the co-

efficients of the 23k−1pij(x) (0 ≤ i, j ≤ 2). Similarly, define P4(k) to be the

product over all primes p with either p ≡ 1 mod 4, p >
√

4k + 1, (p, 4k) = 1

and {(k − 1)/p} > 7/8, or p ≡ 3 mod 4, p >
√

4k + 1, (p, 4k) = 1 and

{(k − 1)/p} > 3/4. If ν = 1/4, then P4(k) divides the greatest common

divisor, say Π4(k), of the coefficients of the 24k−1pij(x)(0 ≤ i, j ≤ 2). We

have

Lemma 3.3 If k is a positive integer, then

(a) Π2(k) >
1

168
(3/2)k

and

(b) Π4(k) >
1

679
(4/3)k.

Proof : (a) From our prior remarks, we may write

Π2(k) ≥ P2(k).
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Define Jl(k) to be the open interval
(
k−1
l
, 4(k−1)

4l−1

)
for l a positive integer.

Then, by definition,

P2(k) ≥

[
k−1√
2k+1

]
∏
l=1

∏
p∈Jl(k)

(p,2k)=1

p.

Firstly, suppose that k ≥ 15656. Then, applying two results of Schoenfeld

[16] (namely, Corollary 2 to Theorem 7 and the Note added in proof ), we

have ∑
p∈J1(k)

log(p) > 0.988828
(

4

3
(k − 1.1)

)
− 1.000081(k − 1)

∑
p∈J2(k)

log(p) > 0.981682
(

4

7
(k − 1.1)

)
− 1.000081

(
k − 1

2

)
∑

p∈J3(k)

log(p) > 0.976870
(

4

11
(k − 1.1)

)
− 1.000081

(
k − 1

3

)
and ∑

p∈J4(k)

log(p) > 0.973344
(

4

15
(k − 1.1)

)
− 1.000081

(
k − 1

4

)
.

Since k ≥ 15656, these estimates imply that∑
1≤l≤4

∑
p∈Jl(k)

(p,2k)=1

log(p) > 0.41k > log(3/2) k

whence

Π2(k) > (3/2)k.

If, however, 1 ≤ k ≤ 15655, we first use a double precision Maple V program

to calculate [
k−1√
2k+1

]
∑
l=1

∑
p∈Jl(k)

(p,2k)=1

log(p)
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for each such k. In the instances when this quantity fails to exceed log(3/2) k

(the largest occurence of which corresponds to the value k = 270), we explic-

itly calculate Π2(k), finding that in all cases

Π2(k) >
1

168
(3/2)k

where the extreme is obtained when k = 30.

(b) As before, we have

Π4(k) ≥ P4(k)

and defining, for each positive integer l, the intervals Ml(k) and Nl(k) by

Ml(k) =

(
k − 1

l
,
8(k − 1)

8l − 1

)

and

Nl(k) =

[
8(k − 1)

8l − 1
,
4(k − 1)

4l − 1

)
,

it follows that

P4(k) ≥

[
k−1√
4k+1

]
∏
l=1

 ∏
p∈Ml(k)

(p,2k)=1

p




∏
p∈Nl(k)

p≡3 mod 4

(p,k)=1

p

 . (3.1)

Suppose that k ≥ 85000. Then we may estimate

∑
p∈Ml(k)

(p,2k)=1

log(p)

as in (a), finding that

7∑
l=1

∑
p∈Ml(k)

(p,2k)=1

log(p) > 0.1857k.
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To deal with the final product in (3.1), we utilize recent work of Ramaré and

Rumely [14] on bounding the function

θ(x, k, l) =
∑
p≤x

p≡l mod k

log(p).

For our purposes, we require only

Lemma 3.4 (a) If x ≤ 1010, then

|θ(x, 4, 3)− x/2| ≤ 1.034832
√
x.

(b) If x > 1010, then

|θ(x, 4, 3)− x/2| ≤ 0.001119x.

We therefore have, for k ≥ 85000,

∑
p∈N1(k)

p≡3 mod 4

log(p) > 0.993852

(
2(k − 1.1)

3

)
− 1.006641

(
4(k − 1)

7

)

∑
p∈N2(k)

p≡3 mod 4

log(p) > 0.990608

(
2(k − 1.1)

7

)
− 1.009721

(
4(k − 1)

15

)

∑
p∈N3(k)

p≡3 mod 4

log(p) > 0.988227

(
2(k − 1.1)

11

)
− 1.012037

(
4(k − 1)

23

)

and

∑
p∈N4(k)

p≡3 mod 4

log(p) > 0.986252

(
2(k − 1.1)

15

)
− 1.013975

(
4(k − 1)

31

)
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whence
4∑
l=1

∑
p∈Nl(k)

p≡3 mod 4

(p,k)=1

log(p) > 0.1053k.

It follows that

Π2(k) ≥ P2(k) ≥ e(0.1857+0.1053)k > (4/3)k.

If 1 ≤ k < 85000, we calculate, via Maple V, the series

[
k−1√
4k+1

]
∑
l=1


∑

p∈Ml(k)

(p,2k)=1

log(p) +
∑

p∈Nl(k)

p≡3 mod 4

(p,k)=1

log(p)

 .

For k ≥ 474, this quantity is smaller than log(4/3) k. If k ≤ 473, we explicitly

compute the value Π4(k) and find that

Π4(k) >
1

679
(4/3)k

where Π4(k) (3/4)k is minimal for k = 31. �

4 Simultaneous Approximation Results

We are now ready to prove

Theorem 4.1 If N ≥ 13, then

max


∣∣∣∣∣∣
√

1− 1

N
− p1

q

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
√

1 +
1

N
− p2

q

∣∣∣∣∣∣
 >

(
1.7× 106 N

)−1
q−λ
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for all positive integers p1, p2 and q, where

λ = 1 +
log(8

√
3N + 16)

log
(

81
64

(N2 − 1)
)

and

Corollary 4.2 If p1, p2 and q are integers, then

max

{∣∣∣∣∣√2− p1

q

∣∣∣∣∣ ,
∣∣∣∣∣√3− p2

q

∣∣∣∣∣
}
> 10−10q−1.8161.

We also have

Theorem 4.3 If N ≥ 4 then

max


∣∣∣∣∣∣ 4

√
1− 1

N
− p1

q

∣∣∣∣∣∣ ,
∣∣∣∣∣∣ 4

√
1 +

1

N
− p2

q

∣∣∣∣∣∣
 >

(
3.4× 1010 N

)−1
q−λ

for all positive integers p1, p2 and q, where

λ = 1 +
log(18

√
3N + 36)

log
(

9
16

(N2 − 1)
) .

To prove Theorem 4.1, we apply Lemma 2.1 to the real numbers (setting

ν = 1/2)

θ1 =

√
1− 1

N
, θ2 =

√
1 +

1

N

and the integers

pijk = 23k−1 Nk Π2(k)
−1 pij(1/N).

By Lemma 3.4 of [15], det(pijk) is nonzero,while Lemmas 2.2 and 3.3 ensure

that

|pijk| ≤
651

5

( √
3N + 2√

3N −
√

3

)1/2

(8
√

3N + 16)k (0 ≤ i, j ≤ 2).
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Since Lemmas 2.3 and 3.3 together yield the inequality∣∣∣∣∣∣pi0k + pi1k

√
1− 1

N
+ pi2k

√
1 +

1

N

∣∣∣∣∣∣ ≤ 567

8

(
81

64
(N2 − 1)

)−k
for 0 ≤ i ≤ 2, we may conclude, from Lemma 2.1, that

max


∣∣∣∣∣∣
√

1− 1

N
− p1

q

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
√

1 +
1

N
− p2

q

∣∣∣∣∣∣
 > cq−λ

where

λ = 1 +
log(8

√
3N + 16)

log
(

81
64

(N2 − 1)
)

and

c−1 =
1984

45

(
567

4

)λ
(
√

3N + 2)

( √
3N + 2√

3N −
√

3

)1/2

.

The desired result follows from the inequality

c−1/N < 1.7× 106

which, for N ≥ 13, is readily obtained by calculus.

Corollary 4.2 is almost immediate. We take N = 49 in Theorem 4.1 and

replace p1, p2 and q by 4p2, 5p1 and 7q. We therefore have

max

{∣∣∣∣∣√2− p1

q

∣∣∣∣∣ ,
∣∣∣∣∣√3− p2

q

∣∣∣∣∣
}
>

7

10
(8.33× 107)−1(7q)−λ (4.1)

where

λ = 1 +
log(392

√
3 + 16)

log(6075/2)
∼ 1.816066.

Since the right hand side of (4.1) exceeds 10−10q−1.8161, we conclude as stated.

The proof of Theorem 4.3 is similar. We take ν = 1/4,

θ1 =
4

√
1− 1

N
, θ2 =

4

√
1 +

1

N
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and

pijk = 24k−1 Nk Π4(k)
−1 pij(1/N).

Then, as before, det(pijk) 6= 0,

|pijk| ≤
21049

40

( √
3N + 2√

3N −
√

3

)1/4

(18
√

3N + 36)k (0 ≤ i, j ≤ 2)

and ∣∣∣∣∣∣pi0k + pi1k
4

√
1− 1

N
+ pi2k

4

√
1 +

1

N

∣∣∣∣∣∣ ≤ 91665

512

(
9

16
(N2 − 1)

)−k

for 0 ≤ i ≤ 2. We conclude that

max


∣∣∣∣∣∣ 4

√
1− 1

N
− p1

q

∣∣∣∣∣∣ ,
∣∣∣∣∣∣ 4

√
1 +

1

N
− p2

q

∣∣∣∣∣∣
 > cq−λ

where

λ = 1 +
log(18

√
3N + 36)

log
(

9
16

(N2 − 1)
)

and

c−1 =
7936

25

(
91665

512

)λ
(
√

3N + 2)

( √
3N + 2√

3N −
√

3

)1/4

.

Theorem 4.3 obtains from the inequality

c−1/N < 3.4× 1010

which holds for all N ≥ 4. We note that Theorems 4.1 and 4.3 give im-

provements upon the trivial Liouville bounds for all values of N satisfying

the stated hypotheses (i.e. for N ≥ 13 and N ≥ 4, respectively).
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5 Concluding Remarks

The exponent for q in (1.4) can be further improved to ∼ 1.79155 by using

more precise estimates for |pij(1/N)| and |Ii(1/N)| and noting that we can

replace the quantity 1
168

(3/2)k in Lemma 3.3 by

c(δ) e(−γ−ψ(3/4)−δ)k

for any δ > 0, where c(δ) is positive and effectively computable, γ is Euler’s

constant and ψ(x) is the derivative of log(Γ(x)). Numerically, one has

e−γ−ψ(3/4) ∼ 1.663.

For details, the reader is directed to [5].

Regarding the relation between these results and diophantine equations,

one may use Corollary 4.2, arguing as in [15], to show that all integer solutions

of the simultaneous Pell-type equations

x2 − 2z2 = u, y2 − 3z2 = v

satisfy

max {|x|, |y|, |z|} ≤
(
1010 max {|u|, |v|}

)5.5
.

This strengthens the work of Rickert [15], who proved that, in the same

situation,

max {|x|, |y|, |z|} ≤
(
107 max {|u|, |v|}

)12
.

The connection between Theorem 4.3 and solving certain norm form equa-

tions is discussed at greater length in [5] and [6].
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